NEWS TEAM APP

Status
Not open for further replies.

XGC Squall

New member
GT and Username Hidden FTK but soon it will change to XGC Yoda



I come from a long line of writing, in other communities such as RGC, IG, and KOD I've been on news teams. I enjoy writing because its a great way to express ones self. I'd like to be a freelance since my squad needs all the active members possible. I've only been here 3 weeks and i am one of the most active in my squad. I currently am in the service and I volunteer by writing for our post newspaper. I couldn't really give links to old articles as if you leave a clan your banned so here is a little work i did for my college paper when I went for my degree in psychology.


It was a paper on the effects and beliefs of schizophrenia....... We had to include facts of proof from someone who has studied the field and what they have found in their studies.....

Mice engineered with a human gene for schizophrenia and exposed to lead during early life exhibited behaviors and structural changes in their brains consistent with schizophrenia. Scientists at Columbia University's Mailman School of Public Health and the Johns Hopkins University School of Medicine say their findings suggest a synergistic effect between lead exposure and a genetic risk factor, and open an avenue to better understanding the complex gene-environment interactions that put people at risk for schizophrenia and other mental disorders.

Results appear online in Schizophrenia Bulletin.

Going back to 2004, work by scientists at the Mailman School suggested a connection between prenatal lead exposure in humans and increased risk for schizophrenia later in life. But a big question remained: How could lead trigger the disease? Based on his own research, Tomas R. Guilarte, PhD, senior author of the new study, believed the answer was in the direct inhibitory effect of lead on the N-methyl-D-aspartate receptor (NMDAR), a synaptic connection point important to brain development, learning, and memory. His research in rodents found that exposure to lead blunted the function of the NMDAR. The glutamate hypothesis of schizophrenia postulates that a deficit in glutamate neurotransmission and specifically hypoactivity of the NMDAR can explain a significant portion of the dysfunction in schizophrenia.

In the new study, Dr. Guilarte, professor and chair of the department of Environmental Health Sciences at the Mailman School, and his co-investigators focused on mice engineered to carry the mutant form of Disrupted-in-Schizophrenia-1 (DISC1), a gene that is a risk factor for the disease in humans. Beginning before birth, half of the mutant DISC1 mice were fed a diet with lead, and half were given a normal diet. A second group of normal mice not expressing the mutant DISC1 gene were also split into the two feeding groups. All mice were put through a battery of behavioral tests and their brains were examined using MRI.

Mutant mice exposed to lead and given a psychostimulant exhibited elevated levels of hyperactivity and were less able to suppress a startle in response to a loud noise after being given an acoustic warning. Their brains also had markedly larger lateral ventricles—empty spaces containing cerebrospinal fluid—compared with other mice. These results mirror what is known about schizophrenia in humans.

While the role of genes in schizophrenia and mental disorders is well established, the effect of toxic chemicals in the environment is only just beginning to emerge. The study's results focus on schizophrenia, but implications could be broader.

"We're just scratching the surface," says Dr. Guilarte. "We used lead in this study, but there are other environmental toxins that disrupt the function of the NMDAR." One of these is a family of chemicals in air pollution called polycyclic aromatic hydrocarbons or PAHs. "Similarly, any number of genes could be in play," adds Dr. Guilarte, noting that DISC1 is among many implicated in schizophrenia.

Future research may reveal to what extent schizophrenia is determined by environmental versus genetic factors or their interactions, and what other mental problems might be in the mix. One ongoing study by Dr. Guilarte is looking at whether lead exposure alone can contribute to deficits of one specialized type of neuron called parvalbumin-positive GABAergic interneuron that is known to be affected in the brain of schizophrenia patients. Scientists are also interested to establish the critical window for exposure—whether in utero or postnatal, or both.

"The animal model provides a way forward to answer important questions about the physiological processes underlying schizophrenia," says Dr. Guilarte.
 

SYN MsTwiztid

New member
Can you get in touch with XGC DresdenDoLL and ask her if she is available for an interview.

I like your stuff, but i'd like to see an interview done on a community member. =)
 
Status
Not open for further replies.
Top